Skimming Digits: Neuromorphic Classification of Spike-Encoded Images

نویسندگان

  • Gregory K. Cohen
  • Garrick Orchard
  • Sio-Hoi Leng
  • Jonathan Tapson
  • Ryad B. Benosman
  • André van Schaik
چکیده

The growing demands placed upon the field of computer vision have renewed the focus on alternative visual scene representations and processing paradigms. Silicon retinea provide an alternative means of imaging the visual environment, and produce frame-free spatio-temporal data. This paper presents an investigation into event-based digit classification using N-MNIST, a neuromorphic dataset created with a silicon retina, and the Synaptic Kernel Inverse Method (SKIM), a learning method based on principles of dendritic computation. As this work represents the first large-scale and multi-class classification task performed using the SKIM network, it explores different training patterns and output determination methods necessary to extend the original SKIM method to support multi-class problems. Making use of SKIM networks applied to real-world datasets, implementing the largest hidden layer sizes and simultaneously training the largest number of output neurons, the classification system achieved a best-case accuracy of 92.87% for a network containing 10,000 hidden layer neurons. These results represent the highest accuracies achieved against the dataset to date and serve to validate the application of the SKIM method to event-based visual classification tasks. Additionally, the study found that using a square pulse as the supervisory training signal produced the highest accuracy for most output determination methods, but the results also demonstrate that an exponential pattern is better suited to hardware implementations as it makes use of the simplest output determination method based on the maximum value.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Benchmarking Spike-Based Visual Recognition: A Dataset and Evaluation

Today, increasing attention is being paid to research into spike-based neural computation both to gain a better understanding of the brain and to explore biologically-inspired computation. Within this field, the primate visual pathway and its hierarchical organization have been extensively studied. Spiking Neural Networks (SNNs), inspired by the understanding of observed biological structure an...

متن کامل

Asynchronous Event-Based 3D Reconstruction From Neuromorphic Retinas

This paper presents a novel N-ocular 3D reconstruction algorithm for eventbased vision data from bio-inspired artificial retina sensors. Artificial restinas capture visual information asynchronously and encode it into streams of asynchronous spike-like pulse signals carrying information on e.g. temporal contrast events in the scene. The precise time of the occurence of these visual features are...

متن کامل

Comparing Neuromorphic Solutions in Action: Implementing a Bio-Inspired Solution to a Benchmark Classification Task on Three Parallel-Computing Platforms

Neuromorphic computing employs models of neuronal circuits to solve computing problems. Neuromorphic hardware systems are now becoming more widely available and "neuromorphic algorithms" are being developed. As they are maturing toward deployment in general research environments, it becomes important to assess and compare them in the context of the applications they are meant to solve. This sho...

متن کامل

Consistent Recovery of Sensory Stimuli Encoded with MIMO Neural Circuits

We consider the problem of reconstructing finite energy stimuli encoded with a population of spiking leaky integrate-and-fire neurons. The reconstructed signal satisfies a consistency condition: when passed through the same neuron, it triggers the same spike train as the original stimulus. The recovered stimulus has to also minimize a quadratic smoothness optimality criterion. We formulate the ...

متن کامل

A compound memristive synapse model for statistical learning through STDP in spiking neural networks

Memristors have recently emerged as promising circuit elements to mimic the function of biological synapses in neuromorphic computing. The fabrication of reliable nanoscale memristive synapses, that feature continuous conductance changes based on the timing of pre- and postsynaptic spikes, has however turned out to be challenging. In this article, we propose an alternative approach, the compoun...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Frontiers in neuroscience

دوره 10  شماره 

صفحات  -

تاریخ انتشار 2016